37 research outputs found

    Efficient Computational Design of 2D van der Waals Heterostructures: Band-Alignment, Lattice-Mismatch, Web-app Generation and Machine-learning

    Full text link
    We develop a computational database, web-apps and machine-learning (ML) models to accelerate the design and discovery of two-dimensional (2D)-heterostructures. Using density functional theory (DFT) based lattice-parameters and electronic band-energies for 674 non-metallic exfoliable 2D-materials, we generate 226779 possible heterostructures. We classify these heterostructures into type-I, II and III systems according to Anderson rule, which is based on the band-alignment with respect to the vacuum potential of non-interacting monolayers.We find that type-II is the most common and the type-III the least common heterostructure type. We subsequently analyze the chemical trends for each heterostructure type in terms of the periodic table of constituent elements. The band alignment data can be also used for identifying photocatalysts and high-work function 2D-metals for contacts.We validate our results by comparing them to experimental data as well as hybrid-functional predictions. Additionally, we carry out DFT calculations of a few selected systems (MoS2/WSe2, MoS2/h-BN, MoSe2/CrI3) to compare the band-alignment description with the predictions from Anderson rule. We develop web-apps to enable users to virtually create combinations of 2D materials and predict their properties. Additionally, we develop ML tools to predict band-alignment information for 2D materials. The web-apps, tools and associated data will be distributed through JARVIS-Heterostructure website (https://www.ctcms.nist.gov/jarvish).Our analysis, results and the developed web-apps can be applied to the screening and design applications, such as finding novel photocatalysts, photodetectors, and high-work function 2D-metal contacts

    Accelerated Discovery of Efficient Solar-cell Materials using Quantum and Machine-learning Methods

    Full text link
    Solar-energy plays an important role in solving serious environmental problems and meeting high-energy demand. However, the lack of suitable materials hinders further progress of this technology. Here, we present the largest inorganic solar-cell material search to date using density functional theory (DFT) and machine-learning approaches. We calculated the spectroscopic limited maximum efficiency (SLME) using Tran-Blaha modified Becke-Johnson potential for 5097 non-metallic materials and identified 1997 candidates with an SLME higher than 10%, including 934 candidates with suitable convex-hull stability and effective carrier mass. Screening for 2D-layered cases, we found 58 potential materials and performed G0W0 calculations on a subset to estimate the prediction-uncertainty. As the above DFT methods are still computationally expensive, we developed a high accuracy machine learning model to pre-screen efficient materials and applied it to over a million materials. Our results provide a general framework and universal strategy for the design of high-efficiency solar cell materials. The data and tools are publicly distributed at: https://www.ctcms.nist.gov/~knc6/JVASP.html, https://www.ctcms.nist.gov/jarvisml/, https://jarvis.nist.gov/ and https://github.com/usnistgov/jarvis
    corecore